翻訳と辞書
Words near each other
・ Brinkley, Arkansas
・ Brinkley, Cambridgeshire
・ Brinkley, Nottinghamshire
・ Brinkleyville, North Carolina
・ Brinklow
・ Brinklow (disambiguation)
・ Brinklow Castle
・ Brinklow railway station
・ Brinklow, Maryland
・ Brinkman
・ Brinkman House
・ Brinkman number
・ Brinkman v. Long
・ Brinkman v. Miami University
・ Brinkman, Oklahoma
Brinkmann coordinates
・ Brinkmann graph
・ Brinkmannella elongata
・ Brinkmanship
・ Brinkmanship (Cold War)
・ Brinkmarsh Quarry
・ Brinks Ltd v Abu-Saleh (No 3)
・ Brinks robbery
・ Brinktown, Missouri
・ Brinkum
・ Brinkumer SV
・ Brinkworth
・ Brinkworth Brook
・ Brinkworth, South Australia
・ Brinkworth, Wiltshire


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Brinkmann coordinates : ウィキペディア英語版
Brinkmann coordinates

Brinkmann coordinates (named for Hans Brinkmann) are a particular coordinate system for a spacetime belonging to the family of pp-wave metrics. In terms of these coordinates, the metric tensor can be written as
:ds^2 \, = H(u,x,y) du^2 + 2 du dv + dx^2 + dy^2
where \partial_, the coordinate vector field dual to the covector field dv, is a null vector field. Indeed, geometrically speaking, it is a null geodesic congruence with vanishing optical scalars. Physically speaking, it serves as the wave vector defining the direction of propagation for the pp-wave.
The coordinate vector field \partial_ can be spacelike, null, or timelike at a given event in the spacetime, depending upon the sign of H(u,x,y) at that event. The coordinate vector fields \partial_, \partial_ are both spacelike vector fields. Each surface u=u_, v=v_ can be thought of as a wavefront.
In discussions of exact solutions to the Einstein field equation, many authors fail to specify the intended range of the coordinate variables u,v,x,y . Here we should take
-\infty < v,x,y < \infty, u_ < u < u_
to allow for the possibility that the pp-wave develops a null curvature singularity.
==References==

*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Brinkmann coordinates」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.